
SPEAK YOUR MIND: INTRODUCING APTLY, THE SOFTWARE
PLATFORM THAT TURNS IDEAS INTO WORKING APPS

David Y.J. Kim1, Ashley Granquist1, Evan Patton1, Mark Friedman2, Hal
Abelson1

1Massachusetts Institute of Technology (USA)
2Independent Researcher (USA)

Abstract
MIT Aptly is a tool that uses the technology of large language models to automatically generate mobile
apps from written or spoken natural language descriptions. Similar to Github’s Copilot, it is based on
OpenAI’s Codex, a specially tuned version of GPT-3. Aptly lets people create programs without
requiring any use of coding or knowledge of programming. For example, one can tell Aptly by
speaking or typing:

Make an app with a text box, a list of six languages and a button that says “translate.” When
the button is clicked, translate the text into the selected language and show the translation.

The result is a complete functioning app for Android or iPhone. The app has a field for user input and
six buttons labeled English, Spanish, French, German, Italian, Japanese. Pressing one of the buttons
translates the input to the corresponding language. Aptly’s app generation is more than just a syntactic
transformation of the input text. Aptly draws upon a large body of code with which it has been trained
to provide a context for its app creation. In the above example, Aptly has independently chosen the six
languages, something that was not specified in the input text.

As most large language models do, Aptly’s performance depends on the input given to OpenAI’s
Codex. These inputs are referred to as prompts. Aptly crafts a prompt by providing a set of example
pairs (a textual description of an example app and its corresponding code) along with the description
of the desired app. Such prompt engineering is referred to as few-shot prompts. In order to optimize
Aptly’s performance, when selecting example pairs, we choose the ones that are semantically close to
the description of the desired app.

The prospect of no-code platforms is currently sparking considerable ferment in enterprises concerned
with professional programming careers. Similarly, Aptly poses challenges for research in
computational thinking education for K-12 students. Much of the present-day curriculum emphasizes
implementing computational artifacts using text-based coding with Python or block-based coding with
Scratch or App Inventor. What will be the foundations for that curriculum when tools like Aptly are
common and the transition from ideas to running programs can be accomplished automatically?
This presentation will demonstrate Aptly’s preliminary performance and review its implementation,
which incorporates OpenAI Codex, Amazon Alexa and MIT App Inventor.

Keywords: computational thinking, mobile application, large language model, innovation.

1 INTRODUCTION

We introduce Aptly, a platform that uses large language models to automatically generate mobile apps
from written or spoken natural language descriptions. We encourage all people, especially young
people, to identify problems in the real world and actively solve them by creating apps. Traditionally,
however, a robust technical background has been necessary to code such apps, which discourages
the process of app creation. The MIT App Inventor team has been developing an intuitive, visual
programming environment that allows everyone to build fully functional apps [1]. Our research takes
this simplification of app creation one step further. By developing Aptly, the team aims to democratize
the process of creating apps, so that making apps is accessible to everyone, not just those with formal
training in computer science.

This paper will first present how to use Aptly by introducing a simple example, followed by the
technical implementation of Aptly along with a couple of preliminary results. Finally, we discuss Aptly's
implications for the future of computational thinking education, challenging the traditional emphasis on
coding and the need to manually translate ideas into code.

2 METHODOLOGY

2.1 How to use Aptly

Figure 1: An App Inventor translation app automatically generated with Aptly

MIT Aptly is a tool that generates Android and iPhone apps from natural language descriptions. For
example, a user can type or speak the following to Aptly:

Make an app with a text box, a list of six languages, and a button that says “translate.” When the
button is clicked, translate the text into the selected language and show the translation.

The result is a working MIT App Inventor app with a text box for input and six buttons labeled
“English”, “Spanish”, “French”, “German”, “Italian”, and “Japanese” as shown above running on a
phone [Figure 1]. Pressing one of the buttons translates the input to the corresponding language. This
way, users can express an idea for an app they want and instantly view it on their phones1.

In generating the app, Aptly makes inferences beyond the literal words and phrases in the text
description. In this example, Aptly has independently chosen the six languages to be English,
Spanish, French, German, Italian, and Japanese, and it has inferred that there should be a box where
the user can provide the text to be translated. To accomplish this, Aptly draws upon a large body of
code that serves as a context for the app generation.

In contrast to Aptly, even the simplest coding platforms featuring blocks-based interfaces, such as
Scratch [2] or App Inventor [1], require technical work. Users of App Inventor, for example, would
create the translation app by specifying components (elements such as buttons, labels, and text

1 The video at https://www.youtube.com/watch?v=dT1i1MEr2Sg shows the creation of a similar translation app using Aptly,
where the user speaks the description.

https://www.youtube.com/watch?v=dT1i1MEr2Sg

boxes) and their properties (attributes such as color and size) as shown in [Figure 2a], and assembling
blocks as shown in [Figure 2b].

Figure 2a: Using App Inventor to specify components for the translation app. Aptly generates these
automatically. This figure shows the component for the list of languages.

Figure 2b: App Inventor blocks for the translation app. Aptly generates these automatically.

With Aptly, the system generates the components, properties, and blocks automatically, then passes
them on to App Inventor, which builds the working app.

2.2 How Aptly Works

Aptly is an application of machine learning research on generative models. Generative models are
probabilistic models that describe how a dataset is generated which enables it to generate new data
by sampling from these models. Specifically, we utilize a transformer-based [3] large language model
to generate mobile apps. Recent demonstrations of large language models have been remarkably
impressive, and this area is attracting a ferment of attention both for its research and commercial
potential. Examples include systems that can create original text [4], computer code [5], music [6], and
images [7]. The inputs to these generative models are called prompts. The performance of generative
models is critically dependent on the quality of the prompts provided. Crafting appropriate prompts is

known as prompt engineering, an active area of machine learning research [8]. One way of crafting a
prompt is by providing a small number of examples of solved tasks as part of the input to the trained
model, which is referred to as “few-shot” prompts [9]. The common interpretation of the few-shot
prompting is that the model is “learning” the task during runtime from the few-shot examples.

The generative model Aptly uses is Open AI’s Codex [5], which generates computer code from natural
language descriptions in several programming languages including Java, Javascript, Python, C, C#,
and Swift. Codex itself is a derivative of OpenAI’s general generative model GPT-3 [9] which has been
fine-tuned for computer code through training on more than 50 million Github repositories.

Figure 3 The whole process of how Aptly uses OpenAI’s Codex to generate a mobile app

[Figure 3] exhibits the general scheme of how we use Codex to generate a fully functional application.
We automatically designed the prompt so that Codex would produce Aptly-Script, a similar language
to Python specialized to have a one-to-one correspondence with App Inventor’s blocks. The design of
Aptly-Script was motivated by the notion that proximity to Python syntax would allow the platform to
take advantage of Codex’s Python training for basic language structures (e.g., that procedure
arguments should be separated by commas and enclosed in balanced parentheses) while also
maintaining a correspondence with App Inventor blocks. Here is the Aptly-Script generated for the
example translation app above.

Screen1 = Screen()
TextBox1 = TextBox(Screen1, Hint = "Enter text here")
LanguageList = ListView(Screen1, ElementsFromString =
"English,Spanish,French,German,Italian,Japanese")
TranslateButton = Button(Screen1, Text = "Translate")
TranslationLabel = Label(Screen1)
Translator1 = Translator(Screen1)

when TranslateButton.Click():
 call Translator1.RequestTranslation (lists_select_item (["en", "es", "fr", "de", "it", "ja"],
LanguageList.Selection), TextBox1.Text)

when Translator1.GotTranslation(responseCode, translation):

set TranslationLabel.Text = translation

When the user requests an app with their natural description, we synthesize a prompt which is a
natural language description (denoted as 𝐷) of the desired app to be created, together with a set of

example pairs, such as the following << 𝑑1, 𝑐1>> << 𝑑2, 𝑐2 >> ... << 𝑑𝑘 , 𝑐𝑘>>, where 𝑑𝑖 is the description

of application 𝑖, and 𝑐𝑖 is the Aptly-Script of application 𝑖. The example pairs come from a database of

unique Aptly examples compiled by the team from apps created on the App Inventor platform. The
example pairs are not expected to include the literal description 𝐷 to be processed nor the actual

Aptly-Script to be generated which would make the generation task trivial. Instead, generative models
use the provided examples to guide their processing in generating new original output.

Aptly’s method for providing good prompts to accompany a description 𝐷 is to provide a set of

example application descriptions paired with appropriate Aptly-Script. We use semantic similarity to
highlight the “appropriateness” of code and description. The method relies on having a way to
automatically measure the (semantic) similarity of text descriptions and the program. For computing
the similarity of the text description and program, we use embeddings [10] of data elements.
Embeddings are numerical representations of concepts converted to number sequences. In our
scenario, an embedding represents the semantic meaning of a natural language description or code
[11]. To measure the similarity of two items, one embeds them in the same vector space and takes the
distance between the two embedding vectors as a measure of similarity (Small distance implies high
similarity while large distance implies low similarity). We use cosine distance, which reflects the angle
between vectors, to compute the distance between two vectors.

We use OpenAI’s Babbage engine model [11] to obtain the embeddings of the description and code.
These Neural Network models were trained using a technique called Contrastive Pre-Training [12].
Contrastive pre-training is a kind of clustering training technique where in the vector space the
predefined positive examples (i.e. matching text and code) move the items toward each other and the
negative examples (i.e. contrasting text and code) move the items away from each other. Using this
model will allow us to select the most relevant example pair to the user’s requested description.

We feed the synthesized prompt into Codex, which outputs the Aptly-Script corresponding to the
user’s requested app description. We can then convert the generated Aptly-Script into App Inventor
blocks to generate a fully functional application (Figure 3)

3 PRELIMINARY RESULTS

Here we show a couple of working examples. We picked examples that are potential apps that
children would create. App creation consists of creating the UI design and implementation of the
functionality.

Figure 4 Working Example 1

If a user types or speaks the following to Aptly:

Make a game that has a button in the middle of the screen. When a user clicks the button,
increment the score by 1

The result is a working MIT App Inventor app with a button that says Click me, as shown in [Figure 4].
When a user presses the button will increase the global variable score by 1.

This app can be assembled by first creating a button and incrementing the score by 1 when the button
is pressed. As we can see, the basic functionality of the requested app is correctly implemented.
However, it failed to properly place the button in the middle of the screen.

If a user types or speaks the following to Aptly:

Create a character that has attributes: intelligence, bravery, and strength. If the reader clicks
the 'read' button, increment intelligence by 10. If the reader clicks the 'Test your limits' button,
increase bravery by 20. If the reader clicks the 'lift weights' button, increase strength by 15.

Figure 5 Working example 2

The result is a working MIT App Inventor app with three buttons that says “Read”, “Test your limits”,
and “Lift weights” respectively, as shown in [Figure 5]. Pressing the button “Read” will increase the
“Intelligence” label text by 15. Pressing the button “Test your limits” will increase the “Bravery” label
text by 10. Pressing the button “Lift weights” will increase the “Strength” label text by 20.

In comparison to the previous app, there are multiple buttons to create, and each button has different
functionality and its respective name. On top of that, it requires you to show an image of a character.
We still observe that the basic functionality of the apps is correctly created. However, we see that the
image of the character is missing (below the buttons). Certain apps will require images and sounds
which we call "assets". How to correctly insert assets is another challenge that our team plan to solve.

4 CONCLUSIONS

4.1 Aptly’s challenge to computational thinking education

The role of programming in computational thinking [13] remains a topic of active discussion among
computer education curriculum developers. Some developers regard practice with coding as
fundamental to the curriculum. Others consider coding to be marginal to computational thinking,
preferring to focus on conceptual ideas about computation, independent of how they are expressed in
computer languages.

Aptly aligns with the second view. It’s closely related to today’s burgeoning “no-code” movement [14]
that seeks to lessen the need for expert programmers in building industrial applications. No-code aims
to make software development accessible to everyone, removing barriers so that people without
extensive training in coding can bring ideas to life. Aptly offers the same approach in K-12 education,
where the emerging software tools could eliminate much of the need for learners to deal with code.

Much of today’s activity in computational thinking traces back to the 1970’s MIT work of Seymour
Papert, where a key principle was that children can practice formal thinking by expressing ideas in a
specially designed computer language (Logo [15]). What becomes of this approach when Aptly and its
successors let the computer automatically recast ordinary language as code? Is the computer now
doing the computational thinking on its own? Has the need to teach computational thinking been
obviated?

Aptly points to a new perspective on computational thinking and raises new questions: Does the tool
diminish the need for humans to engage in computational thinking, and does it signal an end to some
of the core skills currently associated with computational thinking? Or will it inspire more people to dig
deeper into the process of creating programs and let them address new computing possibilities that
transcend coding? Or could it represent a combination of both?

More research on learning outcomes both with beginners and experienced coders is needed. There
are new educational possibilities to explore. For example, learners with some experience can get
started on an app using Aptly and then edit the Aptly-created blocks to add features themselves.
People who want to practice debugging can describe an intended app, have Aptly created one that
mostly matches the description, and then practice finding any bugs that cause the Aptly-generated
app to not function as intended.

Aptly could provide evidence of surprising features of contemporary machine learning as it applies to
computer science education, such as the idea that computers can generalize beyond the specific
instructions they have been given.

4.2 Aptly’s future

Aptly is currently a limited prototype. It does not support every App Inventor feature and its Codex-
based training uses only a few examples. Nevertheless, today’s explosive activity in large-language
models and no-code platforms gives confidence that the performance of Aptly and similar tools will
improve and that their use in K-12 education will grow.

What will be the impact of tools like Aptly in computing education? Consider an analogy with the use
of calculators in mathematics education. The introduction of calculators in the 1970s sparked debates
about their use in education that are still ongoing after 50 years. Some educators resist calculators,
worrying that they would become crutches that undermine the learning of arithmetic skills. Others
embrace the opportunity for calculators to be springboards that let students move beyond arithmetic to
access higher-level mathematics concepts.

Will Aptly be a crutch or a springboard?

We can expect similar debates in computational thinking education around coding skills. This is our
vision for Aptly: Children and adults alike will be able to create meaningful apps without prior
experience in programming. Creating apps — once inaccessible to non-programmers — will require
less expertise, allowing people’s ideas to blossom. That’s both a challenge and an opportunity for
practitioners of educational computing.

ACKNOWLEDGEMENTS

We thank the App Inventor team for supporting our research. We also thank Juston Forte from OpenAI
for giving us insights about using embeddings to optimize performance.

REFERENCES

[1] Wolber, David, Hal Abelson, Ellen Spertus, and Liz Looney. App inventor. " O'Reilly Media, Inc.",
2011.

[2] Resnick, Mitchel, John Maloney, Andrés Monroy-Hernández, Natalie Rusk, Evelyn Eastmond,
Karen Brennan, Amon Millner et al. "Scratch: programming for all." Communications of the ACM 52,
no. 11 (2009): 60-67.

[3] Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Łukasz Kaiser, and Illia Polosukhin. "Attention is all you need." Advances in neural information
processing systems 30 (2017).

[4] Brown, Tom, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D. Kaplan, Prafulla Dhariwal,
Arvind Neelakantan et al. "Language models are few-shot learners." Advances in neural information
processing systems 33 (2020): 1877-1901.

[5] Chen, Mark, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards et al. "Evaluating large language models trained on code." arXiv preprint
arXiv:2107.03374 (2021).

[6] Krol, Stephen James, Maria Teresa Llano, and Jon McCormack. "Towards the Generation of
Musical Explanations with GPT-3." In International Conference on Computational Intelligence in Music,
Sound, Art and Design (Part of EvoStar), pp. 131-147. Springer, Cham, 2022.

[7] Ramesh, Aditya, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark
Chen, and Ilya Sutskever. "Zero-shot text-to-image generation." In International Conference on
Machine Learning, pp. 8821-8831. PMLR, 2021.

[8] Reynolds, Laria, and Kyle McDonell. "Prompt programming for large language models: Beyond the
few-shot paradigm." In Extended Abstracts of the 2021 CHI Conference on Human Factors in
Computing Systems, pp. 1-7. 2021.

[9] Brown, Tom, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D. Kaplan, Prafulla Dhariwal,
Arvind Neelakantan et al. "Language models are few-shot learners." Advances in neural information
processing systems 33 (2020): 1877-1901.

[10] Pennington, Jeffrey, Richard Socher, and Christopher D. Manning. "Glove: Global vectors for
word representation." In Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP), pp. 1532-1543. 2014.

[11] Chen, Zimin, and Martin Monperrus. "A literature study of embeddings on source code." arXiv
preprint arXiv:1904.03061 (2019).

[12] Neelakantan, Arvind, Tao Xu, Raul Puri, Alec Radford, Jesse Michael Han, Jerry Tworek, Qiming
Yuan et al. “Text and code embeddings by contrastive pre-trainging.” arXiv preprint arXiv:2201.10005
(2022).

[13] Wing, Jeannette M. "Computational thinking." Communications of the ACM 49, no. 3 (2006): 33-
35.

[14] Satell, Greg (21 April 2018). "The Future of Software Is No-Code". www.inc.com. Retrieved 20
August 2018.

[15] Abelson, Hal, Nat Goodman, and Lee Rudolph. "Logo manual." (1974).

https://www.inc.com/greg-satell/how-no-code-platforms-are-disrupting-software.html

	1 INTRODUCTION
	2 METHODOLOGY
	2.1 How to use Aptly
	2.2 How Aptly Works

	3 Preliminary RESULTS
	4 CONCLUSIONS
	4.1 Aptly’s challenge to computational thinking education
	4.2 Aptly’s future

