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Abstract
   We introduce a cutting-edge learning platform powered by large language models that enables students to effortlessly generate mo-
bile applications for smartphones and tablets from natural language descriptions. We further demonstrate that these user-generated 
apps can be further optimized with minor adjustments to the generative model's input, or, its "prompt." To maximize the efficacy of 
the prompt in producing a desired application, we explore three different methods of modification: 1) altering the selection mecha-
nism of example pairs, 2) varying the number of example pairs, and 3) changing the order of pairs within the prompt. The prompts 
are constructed from a collection of example pairs, which comprise a textual description of an example app and its corresponding 
code, in addition to a description of the desired app. We test the model's performance by evaluating it with 18 different mobile ap-
plication task descriptions, ranging from basic to complex, and then leveraging BLEU score to compare the model's outputs to manu-
ally created apps. Our findings indicate that the method of determining example pair selection and varying the number of examples 
included can significantly influence the quality of the generated apps. However, reordering the placement of the example pairs within 
the prompt does not affect the outcome. Finally, we conclude with a discussion on the potential implications for computer science 
education. The platform we present in this paper aims to further the democratization of app creation through enabling users to cre-
ate apps with ease, regardless of their technical background.
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Abbreviations
LLM : Large Language Models

Introduction
We present a large language model-based learning platform 

that lets students automatically generate mobile applications for 
smartphones and tablets from natural language descriptions. The 
needs and benefits of education surrounding mobile application 
development has led many educators to design novel curriculums 
targeting that purpose [1]. Nonetheless, many students are dis-
couraged from creating their own applications because the task 
of learning the necessary programming expertise appears daunt-

ing. As a result, there has been a continuous drive to tackle these 
barriers within the scientific and industrial computer science com-
munity to reduce the amount of ostensible coding needed through 
simplification mechanisms such as drag-and-drop functionality 
and block coding (Figure 1). Several learning platforms, such as 
Scratch [2], attempt to make the learning curve less steep and serve 
as a bedrock for students to begin their app development journeys. 
Our research aims to take this simplification of app creation one 
step further. Our platform requires no user interface learning so 
students can focus on generating and describing their unique ideas.

Large language models (LLMs), such as GPT-3, have demon-
strated that they can perform a wide range of text-based tasks 
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Figure 1: Example of a block code.

through carefully crafted model input [3]. The input of LLMs is of-
ten referred to as prompts [4,5]. Several compelling GPT-3 demos 
demonstrate that prompts can be written to customize a single 
model to perform a wide range of tasks, such as creating an image 
out of textual instruction [6,7]. Prompt engineering is an emerging 
field that seeks to improve the text or code generation capabilities 
of a language model by modifying its prompts. This approach is 
centered on optimizing the performance of existing LLMs and has 
the potential to not only reduce the time, cost, and effort required 
to develop new LLMs or gather large datasets for fine-tuning, but 
also to enhance their effectiveness. One way of crafting a prompt 
is by providing a small number of examples of solved tasks as part 
of the input to the trained model, which is referred to as few-shot 
prompts. For instance, if we want the model to perform English to 
French translation, we provide a few translated examples before 
the desired sentence to be translated. The common interpretation 
of the few-shot prompt format is that the model is “learning” the 
task during runtime from few-shot examples. We used OpenAI Co-
dex [8] as the large language model. Codex is a descendant of GPT-
3; its training data contains both natural language and billions of 
lines of source code from publicly available sources.

In response to the emergence of Codex and other LLMs, there 
has been a recent interest in examining methods of generating 
prompts that remove the need for human supervision. Gao., et al. 
[9] focused on automating the selection of few-shot examples for 
a model using a brute-force search for label words and selecting 

Figure 2: A fully functional application with a picture of a  
kitty that, when clicked, plays a meow sound.

demonstrations randomly and based on semantic similarity to 
the prompt. Shin., et al. [10] developed an automatic prompt cre-
ation method for models using the weights of a logistic classifier 
to select label tokens and use a gradient-based approach to deter-
mine ``trigger’’ tokens concatenated at the end of an input. Zhang., 
et al. [11] constructed a transformer-based generative model for 
prompts given a user input, also targeting masked language prob-
lems particularly for factual probing. 

Codex is a language model that has expertise in several pro-
gramming languages, but it excels in Python. To make the most of 
its capabilities, we created a prompt that generates Aptly-Script 
[12], an intermediate Python-like language that can be converted 
into MIT App Inventor block codes [12]. However, we found that 
we can improve the platform’s performance even further through 
prompt engineering techniques. For instance, we can use relevant 
example pairs that demonstrate the use of specific components to 
help the model complete user requests better. Furthermore, pro-
viding more example pairs can help the model learn more and 
improve app creation. We also found that the placement of an ex-
ample within a prompt can affect the generated results, as studies 
on GPT-3 have shown that examples placed towards the end have a 
more significant impact on the output [13]. With all these possibili-
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ties in mind we explore different prompt engineering techniques to 
improve the model’s output for a given description of an applica-
tion. Specifically, we focus on three characteristics of the prompt:

•	 RQ1: Does the quality of code generation differ based on how 
example pairs are chosen?

•	 RQ2: Does increasing the number of example pairs used in the 
prompt improve the quality of code generation?

•	 RQ3: Can we improve the quality of code generation by order-
ing the example pairs differently?

Materials and Methods
Define

Our goal is to determine the best prompt engineering methodol-
ogy to generate the desired mobile app from natural language in-
put through a systematic examination of prompt engineering tech-
niques utilized in previous literature. In this section, we detail our 
process for creating effective prompts for user-generated mobile 
app development. First, a set of example pairs is automatically syn-
thesized in three steps, which correspond with the three prompt 
characteristics we wish to investigate. We then combine these ex-
ample pairs with a natural language description of the desired app 
to construct the prompt. By comparing the effect of distinct vari-
ants of each prompt characteristic on performance, we aim to give 
insight into which prompt engineering approaches are the most ef-
fective in generating high-quality user-prompt applications. 

Design and development
Our target platform, MIT App Inventor, utilizes the “Blockly” 

block coding script for its applications. To convert between code on 
the MIT App Inventor platform and text-based code utilized in the 
LLM prompt, we designed an intermediate language(Aptly Script) 
functions and classes that have a one-to-one correspondence with 
components on the MIT App Inventor platform. For example, a 
Text-to-Speech component in the App Inventor platform would 
have the same callable methods in Aptly-Script. Once the block 
code is created, the MIT App Inventor platform can be used to cre-
ate the desired application. For example, the user can request the 
following translation application:

“Create an app called HelloPurr with a picture of a kitty that, 
when clicked, plays a meow sound”.

Then, a prompt will be automatically synthesized by first select-
ing examples according to the prompt characteristics being tested 
and then concatenating the selected example pairs and the descrip-
tion of the requested translator app. Each example pair represent-
ed in the prompt consists of a textual description of an application 
along with the corresponding Aptly-Script, such as the following 
<< d1, c1 >><< d2, c2 >> ... << dk, ck >>, where di is the description of 
application i, and ci is the Aptly-Script of application i. At the end 
of the prompt, we concatenate the user query to the prompt. The 
synthesized prompt is sent as an input to the Davinci Code version 
2 Codex model, and its hyperparameters are set as the following: 
temperature = 0.5, max tokens = 2000, best of = 10. The output of 
the model can be converted into a fully functional mobile applica-
tion (Figure 3), which generates the Aptly-Script for the applica-
tion. The generated Aptly-Script can then be converted into App In-
ventor blocks to generate a fully functional application (Figure 2).

Figure 3: An overview of the whole process. When the user 
requests an application with its textual description, we automati-

cally synthesize the prompt by adding several example pairs 
along with the desired application’s textual description. This 

constructed prompt is fed into OpenAI Codex model as an input, 
which outputs code that can be converted into a fully functional 

mobile application.
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For the set of example pairs, a database of 85 unique app ex-
amples was compiled by the team from apps created on the App 
Inventor platform. The app examples were selected to cover a wide 
range of the functionality within the App Inventor platform. These 
apps were converted from a block-coding-based expression to Apt-
ly-Script. Each example pair is represented in the following order: 
its textual description, ‘START’ word before the start of the code, 
The Aptly-Script, and a ‘STOP’ word at the end of the code.

A sample example pair is the following:
 “Create an app called HelloPurr with a picture of a kitty that, 

when clicked, plays a meow sound”.
START
Screen1 = Screen(AppName=”HelloPurr”)
Cat = Button(Screen1, Image=”kitty.png”)
Meow = Sound(Screen1, Source=”meow.mp3”)
 when Cat.Click():
 call Meow.Play()
STOP

Testing
We validated the model with 18 descriptions of candidate mo-

bile applications that served as plausible student app requests. 
These candidate application task descriptions included simple ap-
plications and more complex applications to investigate the perfor-
mance of our prompt engineering methods on application tasks of 
varying difficulty. An example of a simple application description 
is, “Make a game that has a button in the middle of the screen. The 
button has a picture of a cookie on it. When the user clicks the but-
ton, increment the score by 1.” This app can be assembled by first 
creating a button, making that button into a cookie, and increment-
ing the score by 1 when the cookie is pressed. Similarly, an example 
of a complex application task is, “Make a creature that the user 
can feed, wash, and cuddle with buttons. Each time the user per-
forms an action, increase the creature’s happiness by 20. If the user 
doesn’t perform an action in 30 seconds, decrease the creature’s 
happiness by 50 and make the creature say ‘stop neglecting me!’ 
” In comparison to the previous app, there are multiple buttons to 
create and each button has a different functionality. On top of that, 
a timer component is necessary to enable the app to say “stop ne-
glecting me” after a certain time.

We created 36 manual solutions to the app tasks, two per 
problem. The solutions for the same problem are designed to be 
as different as possible from each other and cover different inter-

pretations and implementations of the same app description. For 
example, if the description includes “say: ‘Your order is ready!’”, we 
may implement either a text-to-speech, or a text label that “say ‘’ 
that ‘Your order is ready!’ When evaluating the output we compute 
the Bilingual Evaluation Understudy (BLEU) score [14] between 
the two reference solutions programmed by MIT App Inventor and 
the generated Codex output. BLEU score is a metric constrained 
between 0 and 1, with values closer to 1 representing higher simi-
larity between the reference solutions and the machine-generated 
code. We chose to utilize BLEU score as a performance metric be-
cause of its efficiency (able to compute performance for thousands 
of code samples with minimal manual interference), interpretabil-
ity, and its ability to evaluate code samples against multiple imple-
mentations of the same task description. 

Results
Does the quality of code generation differ based on how ex-
ample pairs are chosen?

To address the first research question, we examined the rela-
tionship between different example pair selection mechanisms and 
their performance in terms of BLEU score. More specifically, we fix 
the maximum upper bound length of the prompt to 1000 tokens 
and pick the example pairs in order. From that, we tested four dif-
ferent selection mechanisms we explain below. 

Method I: Random selection
This method randomly selects a number of example pairs with-

in the database. For each execution, it will select a different group 
of example pairs. This selection mechanism will serve as the base-
line for our comparison. 

Method II: Sort code by token length 
Here we sort the example pairs in the database based on code 

length in ascending manner, then select example pairs starting 
from the least code length until it reaches the token cap. This op-
tion has the advantage of sending in the most example pairs for 
Codex to learn from. However, the selected example pairs may not 
reflect what is the most relevant to the requested description. 

Method III: Select based on relevance 
We rank the examples based on how semantically relevant they 

are to the user’s requested application. We do so by generating 
embeddings for each app example and the user description. Em-
beddings are numerical representations of concepts converted to 
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number sequences. In our scenario, an embedding represents the 
semantic meaning of a natural language description or code [15]. 
Embeddings that are numerically similar are also semantically 
similar. For example, the embedding vector of a natural language 
description “Create an app called HelloPurr with a picture of a kitty 
that, when clicked, plays a meow sound.” will be similar to the em-
bedding vector of a code where an app shows an image of some 
animal and when clicked plays the sound the animal makes. To 
compare the similarity of two separate embeddings, you compute 
the cosine between the embedding vectors. The result is a “similar-
ity score”, sometimes called “cosine similarity”, a score between –1 
and 1, where a higher number indicates higher semantic similarity. 
Codex’s Babbage engine was used to generate code embeddings for 
each example app in the database and the users’ textual descrip-
tion.

Method IV: Revised maximum relevance minimum redundan-
cy

We rank the examples using a revised version of Minimum Re-
dundancy Maximum Relevance (mRMR) [16]. mRMR is currently 
used in machine learning [17] as a relatively efficient way to se-
lect a subset of features having the most correlation with a class 
(relevance) and the least correlation between themselves (redun-
dancy). Simply speaking, the goal is to find the “minimal optimal” 
set of variables to predict the dependent variable. Relevance can 
be calculated by using the F-statistic (for continuous features) or 
mutual information (for discrete features) and redundancy can be 
calculated by using Pearson correlation coefficient (for continuous 
features) or mutual information (for discrete features). Since this 
information is unobtainable for few-shot example selection, we 
adapt mRMR by defining relevance as the cosine distance between 
the embedding of the candidate code and user text description, and 
defining redundancy as the cosine distance between the embed-
ding of the candidate code and a code in the set of already selected 
example pair group. We use the following formula to select the next 
example pair j:

Where  is the th code example,  is the user requested app de-
scription,  is the set of example pairs already selected, and  is the 
mutual information (i.e., the cosine similarity) between  and . In-
tuitively, this formula rewards example pairs that maximize the 
information between itself and the user description while it penal-
izes example pairs with a high mutual information with the already 
selected set of example pairs. 

Figure 4: Results for different selection methods. The different 
methods are listed along the abscissa. Each bar indicates the 

mean Bleu score across test data; error bars reflect ±1 standard-
error of the mean, corrected to remove variance due to the 

random factor [18].

 
   Figure 4 shows the results of different selection methods. For 
each selection method, we ran the OpenAI Codex model five times 
for each test sample to address the randomness Codex generates. 
This results in five BLEU scores for each test sample, which we av-
eraged, resulting in a single performance metric per test sample. 
Then, the mean and standard error across test samples is reported. 
We further our investigation by sorting a subset of the test samples 
into two groups of nine based on their complexity. Complexity was 
calculated by counting the number of compound statements (e.g., 
number of if, number of for). We discovered several interesting 
trends within our examination. We observe that overall, select-
ing the most relevant example pairs using embeddings or mRMR 
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turns out to have a marginal advantage. For complex apps, that 
trend seems to be more apparent as mRMR has the upper hand and 
improves the performance from random baseline by 55% (0.10 
increase in BLEU score). For simple apps, relevance-based selec-
tion methods improve the performance by 25% (0.07 increase in 
BLEU score). However, a simple algorithm to select as many ex-
ample pairs as possible is comparable to more advanced methods 
for simple apps. These results indicate that while the model can 
learn to create simple applications by merely providing an abun-
dant number of example pairs, the relevance of example pairs to 
the user’s description becomes crucial when generating the code 
for more complicated applications. 

Does increasing the number of example pairs used in the 
prompt improve the quality of code generation? 

In order to address the second research question, we examined 
the relationship between the number of example pairs selected and 
their performance in terms of BLEU score. Here we fix the selection 
mechanism as the revised mRMR (Method IV) and pick the exam-
ple pairs in the ranked order. 

Figure 5: Results for varying the number of example pairs. The 
token cap values are listed along the abscissa. The plots have iden-
tical layout as those in Figure 4. See the caption of Figure 4 for de-

tails.

The Codex model processes text using tokens, which are com-
mon sequences of characters found in text or can be simply thought 
of as pieces of words. We varied the upper bound on the number 
of tokens for the entire prompt (examples, their descriptions, user 
query), which consequently controls the number of example pairs 
being added to the prompt. The number of tokens in a prompt was 
approximated using the Hugging Face GPT-2 Tokenizer [19]. We 
chose the following cap for tokens 𝜏 : 300, 600, 9000, 1200, 1800,
2100. We added the example with the highest embedding score 
and computed the total length in tokens of the example and user 
query. We continuously selected the next most relevant example 
pair that, once added to the prompt, would keep the prompt within 
the token cap.

Our results displayed in Figure 5 show that the overall differ-
ence of performance seems to be random. However, when we sep-
arate complex applications and simple applications we see some 
patterns. For simple apps the optimal upper limit for tokens is 
apparent around the 1200 mark. However, for complex apps, the 
quality of produced output across different prompt token caps ap-
pears to be minimal. Based on our results, there seems to exist a 
“sweet spot” for simple apps in terms of number of example pairs 
but for complex apps the quality of examples rather than quantity 
appears to be more important. 

Can we improve the quality of code generation by ordering the 
example pairs differently?

In order to address the third research question, we examined 
the relationship between the ordering of example pairs selected 
and their performance in terms of BLEU score. Here we fix the se-
lection mechanism as the revised mRMR (Method IV) and the to-
ken cap as 1000. Consider a case where the following k example 
pairs are selected, << d1, c1 >><< d2, c2 >> ... << dk, ck >>. where << d1, 
c1 >> is the most relevant example pair to the user description and 
<< dk, ck >> the least. There are three ways to order the example 
pairs within the prompt. First, we can randomly order them (which 
we refer to as “random”). Second, we can order them from high-
est ranking to lowest ranking (which we refer to as “top”), which 
is basically feeding the examples pairs in ranked order: << d1, c1 
>><< d2, c2 >> ... << dk, ck >>. Finally, we can order them lowest rank-
ing to highest ranking (which we dub “bottom”), which is feeding 
the examples pairs in reversed ranked order: << dk, ck >><< dk-1, ck-1 
>> ... << d1, c1 >>. Based on our results on Figure 6, both ‘top’ and 
‘bottom’ have a marginal advantage over ’random’ ordering. How-

78

Exploring Prompt Engineering for Generative AI-Based App Generation

Citation: Jasmine L Shone., et al. “Exploring Prompt Engineering for Generative AI-Based App Generation". Acta Scientific Computer Sciences 5.5 (2023):  
73-81.



Figure 6: Results for altering the order of example pairs. The 
orderings are listed along the abscissa. The plots have identical 

layout as those in Figure 4. See the caption of Figure 4 for details.

ever, it seems that in general the orderings of the example pairs 
do not affect the performance of generating code. It is not certain 
what may be the reason for this. However, considering that we cap 
the tokens to 1000 and the average number of tokens for example 
pairs is 268, which results in an average of 3 or 4 example pairs in 
each prompt, it may be possible that the distance between example 
pairs is not far enough to make much of a difference. When we add 

more example pairs, the ordering may make more of a difference.
Conclusion

We have developed an innovative learning platform that is driv-
en by large language models, allowing students to generate mobile 
applications for smartphones and tablets with minimal effort using 
natural language descriptions. Our research goes one step further 
by demonstrating that the user-generated apps can be further re-
fined with minor changes to the generative model’s input, known 

as “prompts.” We explore three different methods of prompt modi-
fication: 1) adjusting the selection mechanism of example pairs, 2) 
varying the number of example pairs, and 3) modifying the order 
of pairs within the prompt. The prompts consist of a set of example 
pairs that include a textual description of an example app and its 
corresponding code, as well as a description of the desired app. We 
evaluate the performance of the model by testing it with 18 differ-
ent mobile app options, ranging from basic to complex, and com-
pare the results to manually created apps using the BLEU score. 
Our research demonstrates that selecting the appropriate example 
pair and varying the number of examples can significantly affect 
the quality of the generated apps, while reordering the example 
pairs has no effect.

Limitations and Future work
 While our study demonstrates the potential of using natural 

language processing to generate mobile apps, there are several 
ways in which our work can be continued and improved. Due to re-
source constraints, we were unable to test a larger amount of data. 
Furthermore, our test data was created in a controlled laboratory 
setting, which may not accurately reflect real-world mobile app de-
velopment scenarios. We plan to expand our test data by collecting 
a larger and more diverse set of mobile app descriptions from real-
world scenarios. This can be achieved by using crowdsourcing or 
scraping app descriptions from app stores. We also aim to explore 
transfer learning techniques to fine-tune the model on specific do-
mains or industries, such as mathematical or language oriented 
apps, which may require specialized features. By doing so, we can 
increase the generalizability of our approach and improve its real-
world applicability.

To enhance the credibility of our results, we plan to incorpo-
rate more evaluation metrics beyond BLEU score. Conduct unit 
testing to verify detailed functionalities of each app and its abil-
ity to perform all requested tasks. Another option is to use a more 
fine-grained evaluation method that takes into account the specific 
requirements and constraints of each test case. For instance, we 
can define a set of metrics that measure the app’s usability, func-
tionality, and design, and evaluate the model’s outputs accordingly. 
This can be achieved by incorporating user feedback or expert 
evaluation into the evaluation process. We will explore additional 
evaluation methods such as automated testing and code analysis to 
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ensure that the generated app is free of bugs and errors. 
Finally, we will explore additional methods of automated 

prompt construction that can potentially improve the performance 
of our approach. For example, we can investigate the use of more 
advanced techniques for selecting and preprocessing the example 
pairs, such as clustering or feature extraction, that can better cap-
ture the underlying patterns and structures in the data. Moreover, 
we plan to conduct a thorough analysis of the hyperparameters of 
the Codex model and evaluate their effect on the quality of the gen-
erated code. This can be achieved by conducting a hyperparameter 
tuning experiment, where we systematically vary the values of the 
hyperparameters and evaluate the model’s performance on a held-
out validation set. In this manner, we may better identify the opti-
mal set of hyperparameters that maximize LLM performance. We 
also plan to compare the performance of Codex with other state-
of-the-art large language models trained on code such as Meta AI’s 
InCoder [20] in generating mobile apps. This can be achieved by 
conducting a systematic evaluation of the performance of different 
models on a standardized set of test cases and comparing their re-
sults. By doing so, we can identify the strengths and weaknesses 
of each model and provide insights into the future development of 
generative models for code.

Discussion 
There are many challenges young learners face when trying to 

develop impactful computational solutions. Many of these can be 
attributed to the context of computing education itself, often taking 
place in traditional computing labs, which are far removed from 
students’ everyday lives. Too often, K-12 computing education has 
been driven by an emphasis on kids learning the “fundamentals” 
of programming such as variables, loops, conditionals, parallelism, 
operators, and data handling [21]. This often discourages students 
from being part of the technological community. To empower young 
people to build these solutions, we need to provide platforms and 
learning environments that reduce the technological barriers for 
app creation to emphasize the students’ ideas. In this study, we’ve 
worked on optimizing a platform that aims to harness the power 
of AI to take an user description of an app and generate an app 
that matches that description. There are several potential educa-
tional uses of such a platform. Furthermore, our work has many 
potential applications in the democratization of app creation; not 
only children but also adults will be able to create meaningful apps 
without prior experience in programming. Seniors continue to lag 
their younger compatriots when it comes to tech adoption [22]. A 

significant majority of older adults say they need assistance when 
it comes to using new digital devices. Just 18% would feel comfort-
able learning to use a new technology device such as a smartphone 
or tablet on their own. Our new platform enables them to bypass 
these obstacles— we aim to make computing education more in-
clusive, more motivating, and more empowering. We hope that 
through our work, we are one step closer to the goal of enabling 
everyday person app ideas into real-life mobile applications.
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