
Acta Scientific COMPUTER SCIENCES

Volume 5 Issue 5 May 2023

Exploring Prompt Engineering for Generative AI-Based App Generation

Jasmine L Shone1, Robin Liu2, Evan Patton2, David YJ Kim2*
1Hawken Upper School, USA
2Department of Electrical Engineering and Computer Science, Massachusetts Institute
of Technology, USA
*Corresponding Author: David YJ Kim, Department of Electrical Engineering and
Computer Science, Massachusetts Institute of Technology, USA.

Research Article

Received: March 21, 2023

Published: April 25, 2023
© All rights are reserved by Jasmine L
Shone., et al.

Abstract
 We introduce a cutting-edge learning platform powered by large language models that enables students to effortlessly generate mo-
bile applications for smartphones and tablets from natural language descriptions. We further demonstrate that these user-generated
apps can be further optimized with minor adjustments to the generative model's input, or, its "prompt." To maximize the efficacy of
the prompt in producing a desired application, we explore three different methods of modification: 1) altering the selection mecha-
nism of example pairs, 2) varying the number of example pairs, and 3) changing the order of pairs within the prompt. The prompts
are constructed from a collection of example pairs, which comprise a textual description of an example app and its corresponding
code, in addition to a description of the desired app. We test the model's performance by evaluating it with 18 different mobile ap-
plication task descriptions, ranging from basic to complex, and then leveraging BLEU score to compare the model's outputs to manu-
ally created apps. Our findings indicate that the method of determining example pair selection and varying the number of examples
included can significantly influence the quality of the generated apps. However, reordering the placement of the example pairs within
the prompt does not affect the outcome. Finally, we conclude with a discussion on the potential implications for computer science
education. The platform we present in this paper aims to further the democratization of app creation through enabling users to cre-
ate apps with ease, regardless of their technical background.
Keywords: Large Language Models; Code Generation; Prompt Engineering; Mobile Applications; Computer Science Education

Abbreviations
LLM : Large Language Models

Introduction
We present a large language model-based learning platform

that lets students automatically generate mobile applications for
smartphones and tablets from natural language descriptions. The
needs and benefits of education surrounding mobile application
development has led many educators to design novel curriculums
targeting that purpose [1]. Nonetheless, many students are dis-
couraged from creating their own applications because the task
of learning the necessary programming expertise appears daunt-

ing. As a result, there has been a continuous drive to tackle these
barriers within the scientific and industrial computer science com-
munity to reduce the amount of ostensible coding needed through
simplification mechanisms such as drag-and-drop functionality
and block coding (Figure 1). Several learning platforms, such as
Scratch [2], attempt to make the learning curve less steep and serve
as a bedrock for students to begin their app development journeys.
Our research aims to take this simplification of app creation one
step further. Our platform requires no user interface learning so
students can focus on generating and describing their unique ideas.

Large language models (LLMs), such as GPT-3, have demon-
strated that they can perform a wide range of text-based tasks

Citation: Jasmine L Shone., et al. “Exploring Prompt Engineering for Generative AI-Based App Generation". Acta Scientific Computer Sciences 5.5 (2023):
73-81.

Figure 1: Example of a block code.

through carefully crafted model input [3]. The input of LLMs is of-
ten referred to as prompts [4,5]. Several compelling GPT-3 demos
demonstrate that prompts can be written to customize a single
model to perform a wide range of tasks, such as creating an image
out of textual instruction [6,7]. Prompt engineering is an emerging
field that seeks to improve the text or code generation capabilities
of a language model by modifying its prompts. This approach is
centered on optimizing the performance of existing LLMs and has
the potential to not only reduce the time, cost, and effort required
to develop new LLMs or gather large datasets for fine-tuning, but
also to enhance their effectiveness. One way of crafting a prompt
is by providing a small number of examples of solved tasks as part
of the input to the trained model, which is referred to as few-shot
prompts. For instance, if we want the model to perform English to
French translation, we provide a few translated examples before
the desired sentence to be translated. The common interpretation
of the few-shot prompt format is that the model is “learning” the
task during runtime from few-shot examples. We used OpenAI Co-
dex [8] as the large language model. Codex is a descendant of GPT-
3; its training data contains both natural language and billions of
lines of source code from publicly available sources.

In response to the emergence of Codex and other LLMs, there
has been a recent interest in examining methods of generating
prompts that remove the need for human supervision. Gao., et al.
[9] focused on automating the selection of few-shot examples for
a model using a brute-force search for label words and selecting

Figure 2: A fully functional application with a picture of a
kitty that, when clicked, plays a meow sound.

demonstrations randomly and based on semantic similarity to
the prompt. Shin., et al. [10] developed an automatic prompt cre-
ation method for models using the weights of a logistic classifier
to select label tokens and use a gradient-based approach to deter-
mine ``trigger’’ tokens concatenated at the end of an input. Zhang.,
et al. [11] constructed a transformer-based generative model for
prompts given a user input, also targeting masked language prob-
lems particularly for factual probing.

Codex is a language model that has expertise in several pro-
gramming languages, but it excels in Python. To make the most of
its capabilities, we created a prompt that generates Aptly-Script
[12], an intermediate Python-like language that can be converted
into MIT App Inventor block codes [12]. However, we found that
we can improve the platform’s performance even further through
prompt engineering techniques. For instance, we can use relevant
example pairs that demonstrate the use of specific components to
help the model complete user requests better. Furthermore, pro-
viding more example pairs can help the model learn more and
improve app creation. We also found that the placement of an ex-
ample within a prompt can affect the generated results, as studies
on GPT-3 have shown that examples placed towards the end have a
more significant impact on the output [13]. With all these possibili-

74

Exploring Prompt Engineering for Generative AI-Based App Generation

Citation: Jasmine L Shone., et al. “Exploring Prompt Engineering for Generative AI-Based App Generation". Acta Scientific Computer Sciences 5.5 (2023):
73-81.

ties in mind we explore different prompt engineering techniques to
improve the model’s output for a given description of an applica-
tion. Specifically, we focus on three characteristics of the prompt:

•	 RQ1: Does the quality of code generation differ based on how
example pairs are chosen?

•	 RQ2: Does increasing the number of example pairs used in the
prompt improve the quality of code generation?

•	 RQ3: Can we improve the quality of code generation by order-
ing the example pairs differently?

Materials and Methods
Define

Our goal is to determine the best prompt engineering methodol-
ogy to generate the desired mobile app from natural language in-
put through a systematic examination of prompt engineering tech-
niques utilized in previous literature. In this section, we detail our
process for creating effective prompts for user-generated mobile
app development. First, a set of example pairs is automatically syn-
thesized in three steps, which correspond with the three prompt
characteristics we wish to investigate. We then combine these ex-
ample pairs with a natural language description of the desired app
to construct the prompt. By comparing the effect of distinct vari-
ants of each prompt characteristic on performance, we aim to give
insight into which prompt engineering approaches are the most ef-
fective in generating high-quality user-prompt applications.

Design and development
Our target platform, MIT App Inventor, utilizes the “Blockly”

block coding script for its applications. To convert between code on
the MIT App Inventor platform and text-based code utilized in the
LLM prompt, we designed an intermediate language(Aptly Script)
functions and classes that have a one-to-one correspondence with
components on the MIT App Inventor platform. For example, a
Text-to-Speech component in the App Inventor platform would
have the same callable methods in Aptly-Script. Once the block
code is created, the MIT App Inventor platform can be used to cre-
ate the desired application. For example, the user can request the
following translation application:

“Create an app called HelloPurr with a picture of a kitty that,
when clicked, plays a meow sound”.

Then, a prompt will be automatically synthesized by first select-
ing examples according to the prompt characteristics being tested
and then concatenating the selected example pairs and the descrip-
tion of the requested translator app. Each example pair represent-
ed in the prompt consists of a textual description of an application
along with the corresponding Aptly-Script, such as the following
<< d1, c1 >><< d2, c2 >> ... << dk, ck >>, where di is the description of
application i, and ci is the Aptly-Script of application i. At the end
of the prompt, we concatenate the user query to the prompt. The
synthesized prompt is sent as an input to the Davinci Code version
2 Codex model, and its hyperparameters are set as the following:
temperature = 0.5, max tokens = 2000, best of = 10. The output of
the model can be converted into a fully functional mobile applica-
tion (Figure 3), which generates the Aptly-Script for the applica-
tion. The generated Aptly-Script can then be converted into App In-
ventor blocks to generate a fully functional application (Figure 2).

Figure 3: An overview of the whole process. When the user
requests an application with its textual description, we automati-

cally synthesize the prompt by adding several example pairs
along with the desired application’s textual description. This

constructed prompt is fed into OpenAI Codex model as an input,
which outputs code that can be converted into a fully functional

mobile application.

75

Exploring Prompt Engineering for Generative AI-Based App Generation

Citation: Jasmine L Shone., et al. “Exploring Prompt Engineering for Generative AI-Based App Generation". Acta Scientific Computer Sciences 5.5 (2023):
73-81.

For the set of example pairs, a database of 85 unique app ex-
amples was compiled by the team from apps created on the App
Inventor platform. The app examples were selected to cover a wide
range of the functionality within the App Inventor platform. These
apps were converted from a block-coding-based expression to Apt-
ly-Script. Each example pair is represented in the following order:
its textual description, ‘START’ word before the start of the code,
The Aptly-Script, and a ‘STOP’ word at the end of the code.

A sample example pair is the following:
 “Create an app called HelloPurr with a picture of a kitty that,

when clicked, plays a meow sound”.
START
Screen1 = Screen(AppName=”HelloPurr”)
Cat = Button(Screen1, Image=”kitty.png”)
Meow = Sound(Screen1, Source=”meow.mp3”)
 when Cat.Click():
 call Meow.Play()
STOP

Testing
We validated the model with 18 descriptions of candidate mo-

bile applications that served as plausible student app requests.
These candidate application task descriptions included simple ap-
plications and more complex applications to investigate the perfor-
mance of our prompt engineering methods on application tasks of
varying difficulty. An example of a simple application description
is, “Make a game that has a button in the middle of the screen. The
button has a picture of a cookie on it. When the user clicks the but-
ton, increment the score by 1.” This app can be assembled by first
creating a button, making that button into a cookie, and increment-
ing the score by 1 when the cookie is pressed. Similarly, an example
of a complex application task is, “Make a creature that the user
can feed, wash, and cuddle with buttons. Each time the user per-
forms an action, increase the creature’s happiness by 20. If the user
doesn’t perform an action in 30 seconds, decrease the creature’s
happiness by 50 and make the creature say ‘stop neglecting me!’
” In comparison to the previous app, there are multiple buttons to
create and each button has a different functionality. On top of that,
a timer component is necessary to enable the app to say “stop ne-
glecting me” after a certain time.

We created 36 manual solutions to the app tasks, two per
problem. The solutions for the same problem are designed to be
as different as possible from each other and cover different inter-

pretations and implementations of the same app description. For
example, if the description includes “say: ‘Your order is ready!’”, we
may implement either a text-to-speech, or a text label that “say ‘’
that ‘Your order is ready!’ When evaluating the output we compute
the Bilingual Evaluation Understudy (BLEU) score [14] between
the two reference solutions programmed by MIT App Inventor and
the generated Codex output. BLEU score is a metric constrained
between 0 and 1, with values closer to 1 representing higher simi-
larity between the reference solutions and the machine-generated
code. We chose to utilize BLEU score as a performance metric be-
cause of its efficiency (able to compute performance for thousands
of code samples with minimal manual interference), interpretabil-
ity, and its ability to evaluate code samples against multiple imple-
mentations of the same task description.

Results
Does the quality of code generation differ based on how ex-
ample pairs are chosen?

To address the first research question, we examined the rela-
tionship between different example pair selection mechanisms and
their performance in terms of BLEU score. More specifically, we fix
the maximum upper bound length of the prompt to 1000 tokens
and pick the example pairs in order. From that, we tested four dif-
ferent selection mechanisms we explain below.

Method I: Random selection
This method randomly selects a number of example pairs with-

in the database. For each execution, it will select a different group
of example pairs. This selection mechanism will serve as the base-
line for our comparison.

Method II: Sort code by token length
Here we sort the example pairs in the database based on code

length in ascending manner, then select example pairs starting
from the least code length until it reaches the token cap. This op-
tion has the advantage of sending in the most example pairs for
Codex to learn from. However, the selected example pairs may not
reflect what is the most relevant to the requested description.

Method III: Select based on relevance
We rank the examples based on how semantically relevant they

are to the user’s requested application. We do so by generating
embeddings for each app example and the user description. Em-
beddings are numerical representations of concepts converted to

76

Exploring Prompt Engineering for Generative AI-Based App Generation

Citation: Jasmine L Shone., et al. “Exploring Prompt Engineering for Generative AI-Based App Generation". Acta Scientific Computer Sciences 5.5 (2023):
73-81.

number sequences. In our scenario, an embedding represents the
semantic meaning of a natural language description or code [15].
Embeddings that are numerically similar are also semantically
similar. For example, the embedding vector of a natural language
description “Create an app called HelloPurr with a picture of a kitty
that, when clicked, plays a meow sound.” will be similar to the em-
bedding vector of a code where an app shows an image of some
animal and when clicked plays the sound the animal makes. To
compare the similarity of two separate embeddings, you compute
the cosine between the embedding vectors. The result is a “similar-
ity score”, sometimes called “cosine similarity”, a score between –1
and 1, where a higher number indicates higher semantic similarity.
Codex’s Babbage engine was used to generate code embeddings for
each example app in the database and the users’ textual descrip-
tion.

Method IV: Revised maximum relevance minimum redundan-
cy

We rank the examples using a revised version of Minimum Re-
dundancy Maximum Relevance (mRMR) [16]. mRMR is currently
used in machine learning [17] as a relatively efficient way to se-
lect a subset of features having the most correlation with a class
(relevance) and the least correlation between themselves (redun-
dancy). Simply speaking, the goal is to find the “minimal optimal”
set of variables to predict the dependent variable. Relevance can
be calculated by using the F-statistic (for continuous features) or
mutual information (for discrete features) and redundancy can be
calculated by using Pearson correlation coefficient (for continuous
features) or mutual information (for discrete features). Since this
information is unobtainable for few-shot example selection, we
adapt mRMR by defining relevance as the cosine distance between
the embedding of the candidate code and user text description, and
defining redundancy as the cosine distance between the embed-
ding of the candidate code and a code in the set of already selected
example pair group. We use the following formula to select the next
example pair j:

Where is the th code example, is the user requested app de-
scription, is the set of example pairs already selected, and is the
mutual information (i.e., the cosine similarity) between and . In-
tuitively, this formula rewards example pairs that maximize the
information between itself and the user description while it penal-
izes example pairs with a high mutual information with the already
selected set of example pairs.

Figure 4: Results for different selection methods. The different
methods are listed along the abscissa. Each bar indicates the

mean Bleu score across test data; error bars reflect ±1 standard-
error of the mean, corrected to remove variance due to the

random factor [18].

 Figure 4 shows the results of different selection methods. For
each selection method, we ran the OpenAI Codex model five times
for each test sample to address the randomness Codex generates.
This results in five BLEU scores for each test sample, which we av-
eraged, resulting in a single performance metric per test sample.
Then, the mean and standard error across test samples is reported.
We further our investigation by sorting a subset of the test samples
into two groups of nine based on their complexity. Complexity was
calculated by counting the number of compound statements (e.g.,
number of if, number of for). We discovered several interesting
trends within our examination. We observe that overall, select-
ing the most relevant example pairs using embeddings or mRMR

77

Exploring Prompt Engineering for Generative AI-Based App Generation

Citation: Jasmine L Shone., et al. “Exploring Prompt Engineering for Generative AI-Based App Generation". Acta Scientific Computer Sciences 5.5 (2023):
73-81.

turns out to have a marginal advantage. For complex apps, that
trend seems to be more apparent as mRMR has the upper hand and
improves the performance from random baseline by 55% (0.10
increase in BLEU score). For simple apps, relevance-based selec-
tion methods improve the performance by 25% (0.07 increase in
BLEU score). However, a simple algorithm to select as many ex-
ample pairs as possible is comparable to more advanced methods
for simple apps. These results indicate that while the model can
learn to create simple applications by merely providing an abun-
dant number of example pairs, the relevance of example pairs to
the user’s description becomes crucial when generating the code
for more complicated applications.

Does increasing the number of example pairs used in the
prompt improve the quality of code generation?

In order to address the second research question, we examined
the relationship between the number of example pairs selected and
their performance in terms of BLEU score. Here we fix the selection
mechanism as the revised mRMR (Method IV) and pick the exam-
ple pairs in the ranked order.

Figure 5: Results for varying the number of example pairs. The
token cap values are listed along the abscissa. The plots have iden-
tical layout as those in Figure 4. See the caption of Figure 4 for de-

tails.

The Codex model processes text using tokens, which are com-
mon sequences of characters found in text or can be simply thought
of as pieces of words. We varied the upper bound on the number
of tokens for the entire prompt (examples, their descriptions, user
query), which consequently controls the number of example pairs
being added to the prompt. The number of tokens in a prompt was
approximated using the Hugging Face GPT-2 Tokenizer [19]. We
chose the following cap for tokens 𝜏 : 300, 600, 9000, 1200, 1800,
2100. We added the example with the highest embedding score
and computed the total length in tokens of the example and user
query. We continuously selected the next most relevant example
pair that, once added to the prompt, would keep the prompt within
the token cap.

Our results displayed in Figure 5 show that the overall differ-
ence of performance seems to be random. However, when we sep-
arate complex applications and simple applications we see some
patterns. For simple apps the optimal upper limit for tokens is
apparent around the 1200 mark. However, for complex apps, the
quality of produced output across different prompt token caps ap-
pears to be minimal. Based on our results, there seems to exist a
“sweet spot” for simple apps in terms of number of example pairs
but for complex apps the quality of examples rather than quantity
appears to be more important.

Can we improve the quality of code generation by ordering the
example pairs differently?

In order to address the third research question, we examined
the relationship between the ordering of example pairs selected
and their performance in terms of BLEU score. Here we fix the se-
lection mechanism as the revised mRMR (Method IV) and the to-
ken cap as 1000. Consider a case where the following k example
pairs are selected, << d1, c1 >><< d2, c2 >> ... << dk, ck >>. where << d1,
c1 >> is the most relevant example pair to the user description and
<< dk, ck >> the least. There are three ways to order the example
pairs within the prompt. First, we can randomly order them (which
we refer to as “random”). Second, we can order them from high-
est ranking to lowest ranking (which we refer to as “top”), which
is basically feeding the examples pairs in ranked order: << d1, c1
>><< d2, c2 >> ... << dk, ck >>. Finally, we can order them lowest rank-
ing to highest ranking (which we dub “bottom”), which is feeding
the examples pairs in reversed ranked order: << dk, ck >><< dk-1, ck-1
>> ... << d1, c1 >>. Based on our results on Figure 6, both ‘top’ and
‘bottom’ have a marginal advantage over ’random’ ordering. How-

78

Exploring Prompt Engineering for Generative AI-Based App Generation

Citation: Jasmine L Shone., et al. “Exploring Prompt Engineering for Generative AI-Based App Generation". Acta Scientific Computer Sciences 5.5 (2023):
73-81.

Figure 6: Results for altering the order of example pairs. The
orderings are listed along the abscissa. The plots have identical

layout as those in Figure 4. See the caption of Figure 4 for details.

ever, it seems that in general the orderings of the example pairs
do not affect the performance of generating code. It is not certain
what may be the reason for this. However, considering that we cap
the tokens to 1000 and the average number of tokens for example
pairs is 268, which results in an average of 3 or 4 example pairs in
each prompt, it may be possible that the distance between example
pairs is not far enough to make much of a difference. When we add

more example pairs, the ordering may make more of a difference.
Conclusion

We have developed an innovative learning platform that is driv-
en by large language models, allowing students to generate mobile
applications for smartphones and tablets with minimal effort using
natural language descriptions. Our research goes one step further
by demonstrating that the user-generated apps can be further re-
fined with minor changes to the generative model’s input, known

as “prompts.” We explore three different methods of prompt modi-
fication: 1) adjusting the selection mechanism of example pairs, 2)
varying the number of example pairs, and 3) modifying the order
of pairs within the prompt. The prompts consist of a set of example
pairs that include a textual description of an example app and its
corresponding code, as well as a description of the desired app. We
evaluate the performance of the model by testing it with 18 differ-
ent mobile app options, ranging from basic to complex, and com-
pare the results to manually created apps using the BLEU score.
Our research demonstrates that selecting the appropriate example
pair and varying the number of examples can significantly affect
the quality of the generated apps, while reordering the example
pairs has no effect.

Limitations and Future work
 While our study demonstrates the potential of using natural

language processing to generate mobile apps, there are several
ways in which our work can be continued and improved. Due to re-
source constraints, we were unable to test a larger amount of data.
Furthermore, our test data was created in a controlled laboratory
setting, which may not accurately reflect real-world mobile app de-
velopment scenarios. We plan to expand our test data by collecting
a larger and more diverse set of mobile app descriptions from real-
world scenarios. This can be achieved by using crowdsourcing or
scraping app descriptions from app stores. We also aim to explore
transfer learning techniques to fine-tune the model on specific do-
mains or industries, such as mathematical or language oriented
apps, which may require specialized features. By doing so, we can
increase the generalizability of our approach and improve its real-
world applicability.

To enhance the credibility of our results, we plan to incorpo-
rate more evaluation metrics beyond BLEU score. Conduct unit
testing to verify detailed functionalities of each app and its abil-
ity to perform all requested tasks. Another option is to use a more
fine-grained evaluation method that takes into account the specific
requirements and constraints of each test case. For instance, we
can define a set of metrics that measure the app’s usability, func-
tionality, and design, and evaluate the model’s outputs accordingly.
This can be achieved by incorporating user feedback or expert
evaluation into the evaluation process. We will explore additional
evaluation methods such as automated testing and code analysis to

79

Exploring Prompt Engineering for Generative AI-Based App Generation

Citation: Jasmine L Shone., et al. “Exploring Prompt Engineering for Generative AI-Based App Generation". Acta Scientific Computer Sciences 5.5 (2023):
73-81.

Bibliography

ensure that the generated app is free of bugs and errors.
Finally, we will explore additional methods of automated

prompt construction that can potentially improve the performance
of our approach. For example, we can investigate the use of more
advanced techniques for selecting and preprocessing the example
pairs, such as clustering or feature extraction, that can better cap-
ture the underlying patterns and structures in the data. Moreover,
we plan to conduct a thorough analysis of the hyperparameters of
the Codex model and evaluate their effect on the quality of the gen-
erated code. This can be achieved by conducting a hyperparameter
tuning experiment, where we systematically vary the values of the
hyperparameters and evaluate the model’s performance on a held-
out validation set. In this manner, we may better identify the opti-
mal set of hyperparameters that maximize LLM performance. We
also plan to compare the performance of Codex with other state-
of-the-art large language models trained on code such as Meta AI’s
InCoder [20] in generating mobile apps. This can be achieved by
conducting a systematic evaluation of the performance of different
models on a standardized set of test cases and comparing their re-
sults. By doing so, we can identify the strengths and weaknesses
of each model and provide insights into the future development of
generative models for code.

Discussion
There are many challenges young learners face when trying to

develop impactful computational solutions. Many of these can be
attributed to the context of computing education itself, often taking
place in traditional computing labs, which are far removed from
students’ everyday lives. Too often, K-12 computing education has
been driven by an emphasis on kids learning the “fundamentals”
of programming such as variables, loops, conditionals, parallelism,
operators, and data handling [21]. This often discourages students
from being part of the technological community. To empower young
people to build these solutions, we need to provide platforms and
learning environments that reduce the technological barriers for
app creation to emphasize the students’ ideas. In this study, we’ve
worked on optimizing a platform that aims to harness the power
of AI to take an user description of an app and generate an app
that matches that description. There are several potential educa-
tional uses of such a platform. Furthermore, our work has many
potential applications in the democratization of app creation; not
only children but also adults will be able to create meaningful apps
without prior experience in programming. Seniors continue to lag
their younger compatriots when it comes to tech adoption [22]. A

significant majority of older adults say they need assistance when
it comes to using new digital devices. Just 18% would feel comfort-
able learning to use a new technology device such as a smartphone
or tablet on their own. Our new platform enables them to bypass
these obstacles— we aim to make computing education more in-
clusive, more motivating, and more empowering. We hope that
through our work, we are one step closer to the goal of enabling
everyday person app ideas into real-life mobile applications.

Acknowledgments
We thank Harold Abelson, Mark Friedman for helping the initial

stage of the research and providing feedback for the draft, we also
thank Ashley Granquist and Maura Kelleher for contributing on de-
signing Aptly-Script.

Conflict of Interest

1. David Wolber., et al. “Democratizing Computing with App In-
ventor”. GetMobile: Mobile Computing and Communications
18.4 (2015): 53-58.

2. Resnick M., et al. “Scratch: programming for all”. Communica-
tions of the ACM 52.11 (2009): 60-67.

3. Brown Tom., et al. “Language models are few-shot learners”.
Advances in Neural Information Processing Systems 33 (2020):
1877-1901.

4. Oppenlaender Jonas. “Prompt Engineering for Text-Based
Generative Art”. arXiv preprint arXiv:2204.13988. (2022).

5. Reynolds Laria., et al. “Prompt programming for large lan-
guage models: Beyond the few-shot paradigm”. Extended Ab-
stracts of the 2021 CHI Conference on Human Factors in Com-
puting Systems (2021).

6. Ramesh Aditya., et al. “Hierarchical text-conditional image
generation with clip latents”. arXiv preprint arXiv:2204.06125
(2022).

7. Rombach Robin., et al. “High-resolution image synthesis with
latent diffusion models”. Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (2022).

8. Chen Mark., et al. “Evaluating large language models trained
on code”. arXiv preprint arXiv:2107.03374 (2021).

80

Exploring Prompt Engineering for Generative AI-Based App Generation

Citation: Jasmine L Shone., et al. “Exploring Prompt Engineering for Generative AI-Based App Generation". Acta Scientific Computer Sciences 5.5 (2023):
73-81.

https://old.sigmobile.org/pubs/getmobile/articles/Vol18Issue4_2.pdf
https://old.sigmobile.org/pubs/getmobile/articles/Vol18Issue4_2.pdf
https://old.sigmobile.org/pubs/getmobile/articles/Vol18Issue4_2.pdf
https://old.sigmobile.org/pubs/getmobile/articles/Vol18Issue4_2.pdf
https://old.sigmobile.org/pubs/getmobile/articles/Vol18Issue4_2.pdf
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://cdn.openai.com/papers/dall-e-2.pdf
https://cdn.openai.com/papers/dall-e-2.pdf
https://cdn.openai.com/papers/dall-e-2.pdf
https://arxiv.org/abs/2112.10752
https://arxiv.org/abs/2112.10752
https://arxiv.org/abs/2112.10752
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374

9. Gao Tianyu., et al. “Making Pre-trained Language Models Bet-
ter Few-shot Learners”. Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers). Association for Computa-
tional Linguistics (2021).

10. Taylor Shin., et al. “AutoPrompt: Eliciting Knowledge from
Language Models with Automatically Generated Prompts”.
Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP). Association for Com-
putational Linguistics, (2020).

11. Zhang Yue., et al. “PromptGen: Automatically Generate
Prompts using Generative Models”. Findings of the Associa-
tion for Computational Linguistics: NAACL 2022. Association
for Computational Linguistics, (2022).

12. Kim, David YJ, et al. "SPEAK YOUR MIND: INTRODUCING APT-
LY, THE SOFTWARE PLATFORM THAT TURNS IDEAS INTO
WORKING APPS." ICERI2022 Proceedings. IATED, 2022.

13. Zhao Zihao., et al. “Calibrate before use: Improving few-shot
performance of language models”. International Conference on
Machine Learning (2021).

14. Papineni Kishore., et al. “Bleu: a Method for Automatic Evalu-
ation of Machine Translation”. Proceedings of the 40th Annual
Meeting of the Association for Computational Linguistics. As-
sociation for Computational Linguistics, (2002).

15. Neelakantan Arvind., et al. “Text and code embeddings by
contrastive pre-training”. arXiv preprint arXiv:2201.10005
(2022).

16. Radovic Milos., et al. “Minimum redundancy maximum rel-
evance feature selection approach for temporal gene expres-
sion data”. BMC Bioinformatics 18.1 (2017): 1-14.

17. Zhao Zhenyu., et al. “Maximum relevance and minimum re-
dundancy feature selection methods for a marketing machine
learning platform”. 2019 IEEE international conference on
data science and advanced analytics (DSAA) (2019).

18. Masson Michael EJ., et al. “Using confidence intervals for
graphically based data interpretation”. Canadian Journal of
Experimental Psychology/Revue Canadienne de Psychologie Ex-
périmentale 57. 3 (2003): 203.

19. Wolf Thomas., et al. “Huggingface’s transformers: State-of-
the-art natural language processing”. arXiv preprint arX-
iv:1910.03771 (2019).

20. Fried, Daniel., et al. “Incoder: A generative model for code in-
filling and synthesis”. arXiv preprint arXiv:2204.05999 (2022).

21. Tissenbaum M., et al. “From computational thinking to com-
putational action”. Communications of the ACM 62.3 (2019):
34-36.

22. Smith A. “Older adults and technology use. Technical report”.
Pew Research Center (2014).

81

Exploring Prompt Engineering for Generative AI-Based App Generation

Citation: Jasmine L Shone., et al. “Exploring Prompt Engineering for Generative AI-Based App Generation". Acta Scientific Computer Sciences 5.5 (2023):
73-81.

https://arxiv.org/abs/2010.15980
https://arxiv.org/abs/2010.15980
https://arxiv.org/abs/2010.15980
https://arxiv.org/abs/2010.15980
https://arxiv.org/abs/2010.15980
https://arxiv.org/abs/2102.09690
https://arxiv.org/abs/2102.09690
https://arxiv.org/abs/2102.09690
https://aclanthology.org/P02-1040/
https://aclanthology.org/P02-1040/
https://aclanthology.org/P02-1040/
https://aclanthology.org/P02-1040/
https://arxiv.org/abs/2201.10005
https://arxiv.org/abs/2201.10005
https://arxiv.org/abs/2201.10005
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-016-1423-9
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-016-1423-9
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-016-1423-9
https://ieeexplore.ieee.org/document/8964172
https://ieeexplore.ieee.org/document/8964172
https://ieeexplore.ieee.org/document/8964172
https://ieeexplore.ieee.org/document/8964172
https://pubmed.ncbi.nlm.nih.gov/14596478/
https://pubmed.ncbi.nlm.nih.gov/14596478/
https://pubmed.ncbi.nlm.nih.gov/14596478/
https://pubmed.ncbi.nlm.nih.gov/14596478/
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/2204.05999
https://arxiv.org/abs/2204.05999

